∫sec2xtanxdx的不定积分结果是

1个回答

  • 原式=∫ (1/(2^cos^x-1))*sinx/cosx dx

    = - ∫ (1/(2^cos^x-1)) / cosx d(cosx)

    设u=cosx,化简得

    原式=- ∫ 1/((2u^2-1)*u)du

    =-∫ 根号2/2(1/(根号2u-1)+1/(1+根号2u))+1/udu

    =-1/2(ln(根号2u-1)+ln(根号2u+1))+lnu+C

    =ln|cosx|-1/2*ln|cos2x|+C