f(x)=√3/2sin2x-(1+cos2x)/2-1/2
=√3/2sin2x-1/2cos2x-1
=sin(2x-π/6)-1
则最小正周期T=2π/2=π
f(c)=0,得sin(2c-π/6)=1,即2c-π/6=π/2,得:c=π/3
sinB/b=sinA/a
由sinB=2sinA,得:2sinA/b=sinA/a,得:b=2a
由余弦定理:c²=a²+b²-2abcosC
即3=a²+4a²-2a²
得a=1
故b=2
f(x)=√3/2sin2x-(1+cos2x)/2-1/2
=√3/2sin2x-1/2cos2x-1
=sin(2x-π/6)-1
则最小正周期T=2π/2=π
f(c)=0,得sin(2c-π/6)=1,即2c-π/6=π/2,得:c=π/3
sinB/b=sinA/a
由sinB=2sinA,得:2sinA/b=sinA/a,得:b=2a
由余弦定理:c²=a²+b²-2abcosC
即3=a²+4a²-2a²
得a=1
故b=2