如果你有耐心的话,你一定可以划出来
我不提倡用比较法,我极力推荐一种很经典的方法:正序和>乱序和>倒序和
不妨设a>b>c
a^2>b^2>c^2,
所以2(a^3+b^3+c^3)>a^2(b+c)+b^2(a+c)+c^2(a+b)
或者就用比较法,
相减得,
a^2(a-b)+b^2(b-a)+a^2(a-c)+c^(c-a)+c^2(c-b)+b^2(b-c)
=(a-b)^2(a+b)+(a-c)^2(a+c)+(c-b)^2(b+c)>0
如果你有耐心的话,你一定可以划出来
我不提倡用比较法,我极力推荐一种很经典的方法:正序和>乱序和>倒序和
不妨设a>b>c
a^2>b^2>c^2,
所以2(a^3+b^3+c^3)>a^2(b+c)+b^2(a+c)+c^2(a+b)
或者就用比较法,
相减得,
a^2(a-b)+b^2(b-a)+a^2(a-c)+c^(c-a)+c^2(c-b)+b^2(b-c)
=(a-b)^2(a+b)+(a-c)^2(a+c)+(c-b)^2(b+c)>0