(Ⅰ) 设等比数列{a n}的首项为a 1>0,公比为q>0,
∵a 2•a 4=a 6,
2
a 3 +
1
a 4 =
1
a 5 ,
∴
a 1 q• a 1 q 3 = a 1 q 5
2
a 1 q 2 +
1
a 1 q 3 =
1
a 1 q 4 ,
解得 a 1 =q=
1
2 ,
∴ a n =
1
2 n .
(Ⅱ)∵ a n =
1
2 n ,
∴ S n =
1
2 +
1
2 2 +…+
1
2 n =
1
2 ×(1-
1
2 n )
1-
1
2 = 1-
1
2 n ,
T n =
1
2 ×
1
2 2 ×…×
1
2 n = (
1
2 )
n(n+1)
2 ,
若存在正整数k,使得不等式 S n+k +
T n
4 <1 对任意的n∈N *都成立,
则 1-
1
2 n+k + (
1
2 )
n(n+1)
2 +2 <1,即 k<
1
2 [(n-
1
2 ) 2 +
15
4 ] ,
∵只有当n=1时,
1
2 [(n-
1
2 ) 2 +
15
4 ] 取得最小值2,满足题意.
∴k<2,正整数k只有取k=1.