已知各项均为正数的等比数列{a n }满足a 2 •a 4 =a 6 , 2 a 3 + 1 a 4 = 1 a 5 .

1个回答

  • (Ⅰ) 设等比数列{a n}的首项为a 1>0,公比为q>0,

    ∵a 2•a 4=a 6

    2

    a 3 +

    1

    a 4 =

    1

    a 5 ,

    a 1 q• a 1 q 3 = a 1 q 5

    2

    a 1 q 2 +

    1

    a 1 q 3 =

    1

    a 1 q 4 ,

    解得 a 1 =q=

    1

    2 ,

    ∴ a n =

    1

    2 n .

    (Ⅱ)∵ a n =

    1

    2 n ,

    ∴ S n =

    1

    2 +

    1

    2 2 +…+

    1

    2 n =

    1

    2 ×(1-

    1

    2 n )

    1-

    1

    2 = 1-

    1

    2 n ,

    T n =

    1

    2 ×

    1

    2 2 ×…×

    1

    2 n = (

    1

    2 )

    n(n+1)

    2 ,

    若存在正整数k,使得不等式 S n+k +

    T n

    4 <1 对任意的n∈N *都成立,

    则 1-

    1

    2 n+k + (

    1

    2 )

    n(n+1)

    2 +2 <1,即 k<

    1

    2 [(n-

    1

    2 ) 2 +

    15

    4 ] ,

    ∵只有当n=1时,

    1

    2 [(n-

    1

    2 ) 2 +

    15

    4 ] 取得最小值2,满足题意.

    ∴k<2,正整数k只有取k=1.