(2)在你工作的基础上继续:
∵已证△BDE≌△BCF
∴BE=BF,且 ∠DBE=∠CBF,
∵BC=CD=DB=2
∴△BCD是等边三角形
∴∠DBC=60º
故∠EBF=∠EBD+∠DBF
=∠CBF+∠FBD
=∠CBD
=60º
因此△BEF是等边三角形.
(3)
①当F移动到C时,△BEF将与△BCD重合,其面积达到最大,同样,当F移动到D时,它将与△ADB重合,面积也达到最大.
容易算得最大值为√3.
②∵AE+CF=2,∴DE+DF=2
故当DE=DF=1时,△DEF的面积达到最大,从而△BEF面积达到最小.
此时S△DEF=(1/2)1·1·sin120º=√3/4
∴ S△BEF=S△BCD-(1/2)S△DEF=√3-√3/4=(3/4)√3
综上述S的取值范围是[(3/4)√3,√3]