1.由条件知:x=(-2t^2-1,t^2+3),
y=(-1/k-2/t,-2/k+1/t)
(1)当k=-2时,若要x//y,则x,y对应分量成比例,即(-2t^2-1)/(1/2-2/t)=(t^2+3)/(1+1/t),由此得t=1
(2)若x垂直y,则它们的内积为0,即对应分量乘积的和为0,即
(-2t^2-1)(-1/k-2/t)+(t^2+3)(-2/k+1/t)=0
化简得:t^2-1/k*t+1=0
要使得这个方程有解,关于t的二次式的判别式必须大于等于0,即1/k^2-4>=0,由此得到:-1/2