y=x^x
lny=xlnx
y'/y=lnx+1
y'=(x^x)(1+lnx)
z=x^(x^x)
lnz=(x^x)lnx
z'/z=lnx*[(x^x)(1+lnx)]+(x^x)*1/x
=[x^(x-1)]*[x(lnx)²+xlnx+1]
z'=[x(lnx)²+xlnx+1]*[x^(x^x+x-1)]
y=x^x
lny=xlnx
y'/y=lnx+1
y'=(x^x)(1+lnx)
z=x^(x^x)
lnz=(x^x)lnx
z'/z=lnx*[(x^x)(1+lnx)]+(x^x)*1/x
=[x^(x-1)]*[x(lnx)²+xlnx+1]
z'=[x(lnx)²+xlnx+1]*[x^(x^x+x-1)]