y=x^2-3x+2与x轴y轴交点(0,2),(1,0),(2,0) 面积=∫ 0 1 (x^2-3x+2)dx-∫ 1 2 (x^2-3x+2)dx =(1/3x^3-3/2x^2+2x) │ 0 1 -( 1/3x^3-3/2x^2+2x) │ 1 2 =5/6+1/6 =1
求抛物线y=x2(x的平方)-3x+2与x轴y轴所围成图形的面积.
y=x^2-3x+2与x轴y轴交点(0,2),(1,0),(2,0) 面积=∫ 0 1 (x^2-3x+2)dx-∫ 1 2 (x^2-3x+2)dx =(1/3x^3-3/2x^2+2x) │ 0 1 -( 1/3x^3-3/2x^2+2x) │ 1 2 =5/6+1/6 =1