不等式两边取自然对数(严格递增)有:
ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)
不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)
=ln2-ln1+lnn-ln(n+1)=ln[n^2/(n+1)]
构造函数f(x)=ln[x^2/(x+1)]-(4x-4)/(6x+3)
对f(x)求导,有:f'(x)=[(x+2)/x(x+1)]+[1/(x+1/2)]^2
当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有
f(n)>=f(2)=ln(4/3)-4/15=0.02>0
即有ln[n^2/(n+1)]>(4n-4)/(6n+3)
原不等式等证