f(x)=(1/(根号(2π)σ)e^(-x^2/(2σ^2))
f(y)=(1/(根号(2π)σ)e^(-y^2/(2σ^2))
因为X,Y独立,所以f(x,y)=f(x)*f(y)=(1/(2πσ^2)e^(-(x^2+y^2)/(2σ^2))
Z=根号下X^2+Y^2
当z
f(x)=(1/(根号(2π)σ)e^(-x^2/(2σ^2))
f(y)=(1/(根号(2π)σ)e^(-y^2/(2σ^2))
因为X,Y独立,所以f(x,y)=f(x)*f(y)=(1/(2πσ^2)e^(-(x^2+y^2)/(2σ^2))
Z=根号下X^2+Y^2
当z