若f(x)在[0,a]上连续,在(0,a)内可到,a>0,且f(0)=1,f(a)=0.证明至少存在一点C属于(0,a)
1个回答
作辅助函数个g(x)=f(x)-x/a
g在0取1,在a取-1,又函数连续,由介值定理,存在c∈(0,a),g(c)=0 这即是满足条件的c.
命题和f是否可导无关,这个条件是不必要的.
相关问题
若f(x)在[0,a]上连续,在(0,a)内可导,a>0,且f(0)=1,f(a)=0,证明(1)至少存在一点&属于(0
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点A在(0,a)使f(A)+Af'(A)=0
设f(x)在[0a]上连续,在(0a)内可导,且f'(a)=0,证明存在一点ξ满足f(ξ)+ξ f'(ξ)=0
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
设f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=f(a),求证:存在 ζ∈(0
高数积分证明题设f(x)在[-a,a]上二阶导函数连续,(a>0),且f(0)=0,证明:在[-a,a]上至少存在一点c
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a
设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0
设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)>0;证明存在唯一一点c属于(a,b),