数学一道抛物线的题.求详解

1个回答

  • F(p/2,0)

    l:x = -p/2

    显然F为的BC中点,B(b,c)在x轴下方,(b - p/2)/2 = p/2,b = 3p/2

    c = -√3p

    C(-p/2,√3p)

    BC的斜率k = (√3p + √3p)/(-p/2 - 3p/2) = -√3

    BC的方程:y = -√3(x - p/2)

    代入y² = 2px,12x² - 20px + 3p² = 0

    (6x - p)(2x - 3p) = 0

    x = p/6 (舍去x = 3p/2,点B)

    A(p/6,p/√3)

    AF² = (p/6 - p/2)² + ( p/√3 - 0)²

    p = 12

    A(2,4√3),K(-6,4√3),F(6,0)

    S = (1/2)*KA*A的纵坐标

    = 16√3