点P是 x 轴上的一个动点吧
y=(1/4)x^2-x+2
=1/4(x-2)^2+1
所以顶点A(2,1)
x=0时,y=1
所以B(0,2)
可知 其关于x轴的对称点B'(0,-2) (有PB=PB')
作图可知PA+PB>=AB'
(两点间线段最短)
则PA+PB的最小值是|AB'|=√(2^2+3^2)=√13
点P是 x 轴上的一个动点吧
y=(1/4)x^2-x+2
=1/4(x-2)^2+1
所以顶点A(2,1)
x=0时,y=1
所以B(0,2)
可知 其关于x轴的对称点B'(0,-2) (有PB=PB')
作图可知PA+PB>=AB'
(两点间线段最短)
则PA+PB的最小值是|AB'|=√(2^2+3^2)=√13