解题思路:根据角平分线的定义可得∠COA=∠DOB,再根据等角的补角相等求出∠CAO=∠DBO,然后利用“角边角”证明△COA和△DOB全等,根据全等三角形对应边相等即可得证.
证明:∵OP平分∠MON,
∴∠COA=∠DOB,
∵∠CAP=∠DBN,
∴∠CAO=∠DBO,
在△COA和△DOB中,
∠COA=∠DOB
OA=OB
∠CAO=∠DBO,
∴△COA≌△DOB(ASA),
∴AC=BD.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质,主要利用了角平分线的定义,等角的补角相等的性质,准确识图,确定出三角形全等的条件是解题的关键.