f(n)=1/(n+1)+1/(n+2)+...+1/2n总共有n项.
f(n+1)= 1/(n+2)+1/(n+3)+...+1/2n+1/(2n+1)+1/(2n+2).(1)
f(n)=1/(n+1)+1/(n+2)+1/(n+3)+...+1/2n.(2)
(1)-(2)得:f(n+1)-f(n)= -1/(n+1)+1/(2n+1)+1/(2n+2)
(通分整理后)=1/[2(n+1)(2n+1)].
另外,f(1)=1/2,f(2)=1/3+1/4,f(3)=1/4+1/5+1/6,f(4)=1/5+1/6+1/7+1/8,
f(5)=1/6+1/7+1/8+1/9+1/10.依次类推.
还有一个注意的是:f(n+1)的最后一项是1/(2n+2),并不是1/(2n+1)!
因为:1/[2(n+1)]=1/(2n+2).可能您在这个地方错了.