设g(x)=f(x)-f(x+(b-a)/2),则g(X)在[a,(a+b)/2]上连续.
g(a)=f(a)-f(a+(b-a)/2)=f(a)-f((a+b)/2)
g((a+b)/2)=f((a+b)/2)-f(a+b)/2+(b-a)/2)=f((a+b)/2)-f(b)=f((a+b)/2)-f(a)=-g(a)
如果f((a+b)/2)=f(a),则c=(a+b)/2
如果f((a+b)/2)≠f(a),则g(a)g((a+b)/2)
设g(x)=f(x)-f(x+(b-a)/2),则g(X)在[a,(a+b)/2]上连续.
g(a)=f(a)-f(a+(b-a)/2)=f(a)-f((a+b)/2)
g((a+b)/2)=f((a+b)/2)-f(a+b)/2+(b-a)/2)=f((a+b)/2)-f(b)=f((a+b)/2)-f(a)=-g(a)
如果f((a+b)/2)=f(a),则c=(a+b)/2
如果f((a+b)/2)≠f(a),则g(a)g((a+b)/2)