答案是9/20
等差数列{An},{Bn}的前n项和为Sn与Tn,若Sn/Tn=2n/3n+1,则A5/B7的值是
3个回答
相关问题
-
等差数列{an},{bn}的前n项和分别为Sn,Tn,Sn/Tn=2n/3n+1则a3/b5
-
等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
-
若等差数列{an}与{bn}的前n项之和分别为Sn和Tn,若Sn/Tn=(5n+2)/(7n-1),则a10/b10=
-
设Sn ,Tn分别为等差数列{an}{bn}的前n项和,Sn/Tn=(5n-2)/(n+3),则an/bn=?
-
等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
-
等差数列an,bn的前n项和Sn,Tn满足Sn/Tn=3n+1/2n+5,则a5+b3=
-
等差数列,{an},{bn}的前n项和分别是Sn,Tn.若Sn/Tn=2n/3n+1,求a5/b5的值
-
以Sn,Tn分别表示等差数列{an},{bn}的前n项和,若Sn/Tn=n/(n+3),则a4/b5的值为
-
等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=(2n-1)/(3n+2),则a5/b5
-
设2个等差数列{an}{bn}的前n项和是Sn,Tn,若Sn/Tn=3n+1/2n+7.求an/bn~