解题思路:先对函数f(x)求导,然后令导数为0,求出x的值,分别求出f(x)在拐点及x=0和x=3时的值,通过比较即可得出答案.
∵f′(x)=6x2-6x-12,令f′(x)=0,得x=-1或x=2,
∴f(-1)=12,f(2)=-15,
∵f(0)=5,f(3)=-4,
∴f(x)max=5,f(x)min=-15,
故选D.
点评:
本题考点: 函数的值域.
考点点评: 本题考查了函数的值域,难度一般,关键是通过求导的方法求函数的最值.
解题思路:先对函数f(x)求导,然后令导数为0,求出x的值,分别求出f(x)在拐点及x=0和x=3时的值,通过比较即可得出答案.
∵f′(x)=6x2-6x-12,令f′(x)=0,得x=-1或x=2,
∴f(-1)=12,f(2)=-15,
∵f(0)=5,f(3)=-4,
∴f(x)max=5,f(x)min=-15,
故选D.
点评:
本题考点: 函数的值域.
考点点评: 本题考查了函数的值域,难度一般,关键是通过求导的方法求函数的最值.