当 x = 3 时,
0=(x1+x2+x3)^2 =>x1x2 +x2x3+x3x1 =-1/2 * (x1^2+x2^2+x3^2) x1x2 +x2x3+x3x4+x4x1
=-1/2 * ((x1+x3)^2+(x2+x4)^2) =5时,可取 x1 = x2 = 1,x4=-2,其他xi = 0,则不等式不成立.
当 x = 3 时,
0=(x1+x2+x3)^2 =>x1x2 +x2x3+x3x1 =-1/2 * (x1^2+x2^2+x3^2) x1x2 +x2x3+x3x4+x4x1
=-1/2 * ((x1+x3)^2+(x2+x4)^2) =5时,可取 x1 = x2 = 1,x4=-2,其他xi = 0,则不等式不成立.