设集合A=[0,1/2],B=[1/2,1],函数f(x)={①x+1/2,x∈A,②2(1-x),x∈B,若x0∈A,
1个回答
x0∈A 则x0+1/2∈B
f(f(x0))=f(x0+1/2)=2[1-(x0+1/2)]=1-2x0∈A
0
相关问题
设集合A=[0,1),B=[1,2],函数f(x)={ 2 x ,(x∈A), 4-2x,(x∈B), x 0 ∈A,且
设集合A={X|X²+4x=0},B={X|X²+2(a+1)x+a²-1=0 若集合B有
设函数的集合P={f(x)=log2(x+a)+b|a=- 1 2 ,0,1 2 ,1;b=-1,
设集合A={x丨x²+4x=0},集合B={x丨x²+2(a+1)x+a²-1=0},若B
设集合A={x|x²+4x=0},B={x|x²+2(a+1)x+a²-1=0},若B包含
设函数f(x)=−2x+a2x+1+b(a>0,b>0).
设集合A={x/x^2+4x=0},B={x/x^2+2(a+1)x+a^2-1=0},若B属于A,求a范围
设集合A={x|x^2+4x=0},B={x|x^2+2(a+1)x+a^2-1=0}
设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},
设集合A=[0,0.5],B=[0.5,1],函数f(x)={x+0.5,x属于A,2(1—x)x属于B若x0属于A且f