∠CEB=∠AED,
AE=EB,AD=DF,
AB=2AE,AF=2AD,
AE:AB=AD:AF,∠EAD=∠DAF,
△EAD∽△BAF,
∠AED=∠ABF=∠CED,
∠BCE=∠BAF,(同弧所对圆周角相等),
故∠CBE=∠AFB,
因此△CBE∽△AFB(AAA);
BE/FB=CB/AF=CB/(2AD),
CB/AD=2BE/FB=2*5/8=5/4.
∠CEB=∠AED,
AE=EB,AD=DF,
AB=2AE,AF=2AD,
AE:AB=AD:AF,∠EAD=∠DAF,
△EAD∽△BAF,
∠AED=∠ABF=∠CED,
∠BCE=∠BAF,(同弧所对圆周角相等),
故∠CBE=∠AFB,
因此△CBE∽△AFB(AAA);
BE/FB=CB/AF=CB/(2AD),
CB/AD=2BE/FB=2*5/8=5/4.