limx→1 (3√x-1)/(√x-1)求极限

1个回答

  • 解法一:原式=lim(x->1){[(x^(1/3)-1)(x^(2/3)+x^(1/3)+1)(√x+1)]/[(√x-1)(√x+1)(x^(2/3)+x^(1/3)+1)]}

    =lim(x->1){[(x-1)(√x+1)]/[(x-1)(x^(2/3)+x^(1/3)+1)]}

    =lim(x->1)[(√x+1)/(x^(2/3)+x^(1/3)+1)]

    =(1+1)/(1+1+1)

    =2/3;

    解法二:原式=lim(x->1){[(1/3)x^(-2/3)]/[(1/2)x^(-1/2)]} (0/0型极限,应用罗比达法则)

    =(1/3)/(1/2)

    =2/3.