(9/4)^2/9-5^2/16=λ=-1
(y^2/16)-(x^2/9)=1
实轴长2*4=8
虚轴长2*3=6
焦点坐标(0,±5)
离心率5/4
渐近线方程y=±4/3
设M(t,s),L:y=x+s-t
xx/4+yy=1
xx/4+(x+s-t)^2=1
5/4xx+2(s-t)x+(s-t)^2-1=0
t=(x1+x2)/2
2t=x1+x2=2(t-s)*4/5
s=-1/4t
于是M轨迹y=-1/4x
(9/4)^2/9-5^2/16=λ=-1
(y^2/16)-(x^2/9)=1
实轴长2*4=8
虚轴长2*3=6
焦点坐标(0,±5)
离心率5/4
渐近线方程y=±4/3
设M(t,s),L:y=x+s-t
xx/4+yy=1
xx/4+(x+s-t)^2=1
5/4xx+2(s-t)x+(s-t)^2-1=0
t=(x1+x2)/2
2t=x1+x2=2(t-s)*4/5
s=-1/4t
于是M轨迹y=-1/4x