下列命题中正确命题的个数是(  )

1个回答

  • 解题思路:(1)中,由命题p写出它的否定¬p,判定命题(1)是否正确;

    (2)中,求出直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直时,m的取值,即可判定命题(2)是否正确;

    (3)中,由回归直线过样本中心点,求出回归直线方程,即可判定命题(3)是否正确;

    (4)中,通过函数的关系式,求出函数的周期,利用奇函数直接判断结果即可.

    对于(1),命题p:∃x∈R,使得x2+x+1<0的否定是¬p:∀x∈R,均有x2+x+1≥0;∴命题(1)错误.

    对于(2),∵直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直时,m(m+3)-6m=0,即m=0或m=3,

    ∴m=3不是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;∴命题(2)错误.

    对于(3),∵回归直线为

    ̂

    y=bx+a的斜率的值为1.23,直线过样本点的中心(4,5),

    ∴a=0.08,∴回归直线方程是为

    ̂

    y=1.23x+0.08;∴命题(3)正确.

    对于(4),函数f(x)是定义在R上的奇函数,且f(x+4)=f(x),∴f(0)=0,并且函数的周期是4,

    ∴f(2012)=f(503×4)=f(0)=0,∴(4)正确.

    故选:A.

    点评:

    本题考点: 命题的真假判断与应用.

    考点点评: 本题通过命题真假的判定,考查了命题的否定、充分与必要条件、回归直线方程的知识,解题时应对每一个命题认真分析,以便作出正确的选择,是综合性题目.