求几道奥数题1.若x^2+4y^2+9z^2=x^3+2y^3+3z^3=x^4+y^4+z^4求X,Y,Z及上述个式的

1个回答

  • x^2+4y^2+9z^2=x^4+y^4+z^4

    x²(x²-1)+y²(y²-4)+z²(z²-9)=0

    x²=1,y²=4,z²=9

    x^2+4y^2+9z^2=x^3+2y^3+3z^3

    x²(x-1)+2y²(y-2)+3z²(z-3)=0

    所以x=1,y=2,z=3

    剩下的自己代进去!

    3

    X+Y+Z=1

    x^2+y^2+z^2+2xy+2xz+2yz=1

    因为x+y^2+z^2=2

    xy+xz+yz=-1/2

    X^3+Y^3+Z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=1*(2+1/2)

    所以

    3-3xyz=5/2

    xyz=1/6

    4

    a+b+c=0,a*a+b*b+c*c=1,

    (a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc

    2(ab+bc+ac)=(a+b+c)^2-(a^2+b^2+c^2)=0-1=-1

    ab+bc+ac=-1/2,

    a^4+b^4+c^4

    =(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+a^2c^2)

    =1-2[(ab+bc+ac)^2-2abc(a+b+c)]

    =1-2[(-1/2)^2-0]

    =1-1/2

    =1/2

    7

    b^2+c^2-a^2=(b+c)^2-2bc-a^2=a^2--2bc-a^2=-2bc

    同理c^2+a^2-b^2=-2ac

    a^2+b^2-c^2=-2ab

    所以原式=1/(-2bc)+1/(-2ac)+1/(-2ab)

    =(a+b+c)/(-2abc)

    =0