解 答 (I)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB= AC2+BC2=10.
如图1,设⊙O1与Rt△ABC的边AB,BC,CA分别切于点D,E,F.
连接O1D,O1E,O1F,AO1,BO1,CO1.
于是O1D⊥AB,O1E⊥BC,O1F⊥AC.
S△AO1C=12AC•O1F=12AC•r1=3r1,S△BO1C=12BC•O1E=12BC•r1=4r1,S△AO1B=12AB•O1D=12AB•r1=5r1,S△ABC=12AC•BC=24.
又∵S△ABC=S△AO1C+S△BO1C+S△AO1B,
∴24=3r1+4r1+5r1,
∴r1=2.
(II)如图2,连接AO1,BO2,CO1,CO2,O1O2,则
S△AO1C=12AC•r2=3r2,S△BO2C=12BC•r2=4r2.
∵等圆⊙O1,⊙O2外切,
∴O1O2=2r2,且O1O2∥AB.
过点C作CM⊥AB于点M,交O1O2于点N,则
CM=AC•BCAB=245,CN=CM-r2=245-r2.
∴S△CO1O2=12O1O2•CN=(245-r2)r2,
∴S梯形AO1O2B=12(2r2+10)r2=(r2+5)r2.
∵S△ABC=S△AO1C+S△BO2C+S△CO1O2+S梯形AO1O2B,
∴3r2+4r2+( 245-r2)•r2+(r2+5)r2=24,
解得r2= 107.
(III)如图3,连接AO1,BOn,CO1,COn,O1On,则
S△AO1C=12AC•rn=3rn,S△BOnC=12BC•rn=4rn.
∵等圆⊙O1,⊙O2,…,⊙On依次外切,且均与AB边相切,
∴O1,O2,…,On均在直线O1On上,且O1On∥AB,
∴O1On=(n-2)2rn+2rn=2(n-1)rn.
过点C作CH⊥AB于点H,交O1On于点K,
则CH=245,CK=245-rn.
S△CO1On=12O1On•CK=(n-1)(245-rn)rn,S梯形AO1OnB=12[2(n-1)rn+10]rn=[(n-1)rn+5]rn.
∵S△ABC=S△AO1C+S△BOnC+S△CO1On+S梯形AO1OnB,
∴24=3rn+4rn+(n-1)(245-rn)rn+[(n-1)rn+5]rn.
解得rn=102n+3