小题1:略
小题2:
(1)要求△ABE∽△DFA,能看出有一对直角相等,只需要再找一对角相等,因为四边形ABCD是长方形,那么就出现平行线,有线的平行可得出一对内错角相等,故可证两三角形相似。
(2)由(1)的相似,可得到比例线段,就可得出x与y的关系式,通过观察图可以知道,AE最小大于AB,最大小于AC,再由勾股定理可求出AC的值,因此可得x的取值范围。
(1)∵四边形ABCD是长方形,
∴AD∥BC,∠ABE=90°.
∴∠DAF=∠AEB.
又∵DF⊥AE,
∴∠AFD=90°
∴∠ABE=∠DFA
∴△ABE∽△DFA。
(2)∵△ABE∽△DFA,
∴AB/AE=DF/AD
∴3/X=Y/4
∴xy=12.
∴y=12/X
根据图可知,AE最小大于AB,最大小于AC,
∵AC 2=AB 2+BC 2
∴AC=5.
∴3<x<5。