f(x)=ab+√3/2
=sinxcosx-√3cos²x+√3/2
=1/2sin2x-√3/2(2cos²x-1)
=1/2sin2x-√3/2cos2x
=sin(2x-π/3)
f(x)最小正周期T=2π/2=π
∵0≤x≤π/2
∴0≤2x≤π
∴-π/3≤2x-π/3≤2π/3
∴-√3/2≤sin(2x-π/3)≤1
∴f(x)的值域为[-√3/2,1]
f(x)=ab+√3/2
=sinxcosx-√3cos²x+√3/2
=1/2sin2x-√3/2(2cos²x-1)
=1/2sin2x-√3/2cos2x
=sin(2x-π/3)
f(x)最小正周期T=2π/2=π
∵0≤x≤π/2
∴0≤2x≤π
∴-π/3≤2x-π/3≤2π/3
∴-√3/2≤sin(2x-π/3)≤1
∴f(x)的值域为[-√3/2,1]