C为直角,则AB=√(AC^2+BC^2)=√(50^2+70^2)=10√74≈86
DE⊥BC,则DE∥AC,∴△BDE∽△BCA
∴DE/AC=BD/BC=(BC-CD)/BC
=> DE=AC(BC-CD)/BC=50*(70-24)/70=32.86
BE/BD=AB/BC=BE/(BC-CD)=AB/BC
=> BE=(BC-CD)AB/BC=(70-24)*86/70=56.5
AE=AB-BE=86-56.5=29.5
C为直角,则AB=√(AC^2+BC^2)=√(50^2+70^2)=10√74≈86
DE⊥BC,则DE∥AC,∴△BDE∽△BCA
∴DE/AC=BD/BC=(BC-CD)/BC
=> DE=AC(BC-CD)/BC=50*(70-24)/70=32.86
BE/BD=AB/BC=BE/(BC-CD)=AB/BC
=> BE=(BC-CD)AB/BC=(70-24)*86/70=56.5
AE=AB-BE=86-56.5=29.5