证明:(1)∵已知△ABC是等边三角形,AE=CD
∴AB=AC,∠BAC=∠C=60°
∴在△ABE与△CAD中,有
AB=AC,
∠BAC=∠C,
AE=CD,
∴△ABE≌△CAD
(2)由(1)中△ABE≌△CAD→∠ABE=∠CAD
而在△ABE与△AEF中,有
∠ABE=∠FAE(∠CAD与∠FAE为同一角),
∠BEA=∠AEF(∠BEA与∠AEF为共角),
∴∠AFE=∠BAC=60°
∴∠BFD=∠AFE=60°(对顶角相等)
证明:(1)∵已知△ABC是等边三角形,AE=CD
∴AB=AC,∠BAC=∠C=60°
∴在△ABE与△CAD中,有
AB=AC,
∠BAC=∠C,
AE=CD,
∴△ABE≌△CAD
(2)由(1)中△ABE≌△CAD→∠ABE=∠CAD
而在△ABE与△AEF中,有
∠ABE=∠FAE(∠CAD与∠FAE为同一角),
∠BEA=∠AEF(∠BEA与∠AEF为共角),
∴∠AFE=∠BAC=60°
∴∠BFD=∠AFE=60°(对顶角相等)