若an=log(n+1)(n+2)(n∈N),我们把使乘积a1*a2……an为整数的数n叫做傲数,在区间(1,2011)

1个回答

  • 若an=log(n+1)(n+2)(n∈N),我们把使乘积a1*a2……an为整数的数n叫做傲数,在区间(1,2011)内所有傲数和为

    (n + 1)是对数的底吧?如果是,可以这么考虑.

    先换底,an=log(n+2)/log(n+1)(n∈N),这里的log是以2为底的

    于是,a1*a2……an

    = log3/log2 * log4/log3 * ...* log(n+2)/log(n+1)

    = log(n+2)/log2

    = log(n+2)

    也就是说,只有n = 2^k - 2时,n是傲数

    1 < 2^k - 2 < 2011

    1 < k < 11,即k = 2,3,4,5,6,7,8,9,10.共9个

    这些傲数的和为

    2^2 + 2^3 + ...+ 2^10 - 2*9

    = 2^2 + (2^2 + 2^3 + ...+ 2^10) - 18 - 4

    = 2^11 - 22

    = 2048 - 22

    = 2026

    只是为了说明方法,不保证计算结果的正确性