设CD=X
∵∠B=90,∠BAC=45
∴∠C=180-∠B-∠BAC=45
∴AB=BC
∵FD⊥BC
∴FD∥AB,等腰RT△CDF
∴∠AEF=∠DFE,DF=CD=X,CF=√2CD=√2X
∵△AEF沿EF折叠至△DEF
∴EF垂直平分AD,∠AFE=∠DFE
∴AF=DF=X,∠AEF=∠AFE
∴AE=AF=X
∵AC=AF+CF=(√2+1)X
∴AB=AC/√2=(1+√2/2)X
∴BE=AB-AE=√2X/2
∴AE/BE=X/(√2X/2)=√2
设CD=X
∵∠B=90,∠BAC=45
∴∠C=180-∠B-∠BAC=45
∴AB=BC
∵FD⊥BC
∴FD∥AB,等腰RT△CDF
∴∠AEF=∠DFE,DF=CD=X,CF=√2CD=√2X
∵△AEF沿EF折叠至△DEF
∴EF垂直平分AD,∠AFE=∠DFE
∴AF=DF=X,∠AEF=∠AFE
∴AE=AF=X
∵AC=AF+CF=(√2+1)X
∴AB=AC/√2=(1+√2/2)X
∴BE=AB-AE=√2X/2
∴AE/BE=X/(√2X/2)=√2