答:
a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-(a^3+b^3+c^3)
=a(b^2+c^2-a^2)+b(a^2+c^2-b^2)+c(a^2+b^2-c^2)
=a*2bccosA+b*2accosB+c*2abcosC
=2abc(cosA+cosB+cosC)
=2abc[cosA+cosB+cos(180°-A-B)]
=2abc[cosA+cosB-cos(A+B)]
=2abc{2cos[(A+B)/2]*cos[(A-B)/2]-2[cos((A+B)/2)]^2+1}
=2abc{2cos[(A+B)/2]*[cos(A-B)/2-cos(A+B)/2]+1}
=2abc{2cos[(A+B)/2]*2sin(A/2)*sin(B/2)+1}
=2abc{4cos[(A+B)/2]*sin(A/2)*sin(B/2)+1}
因为:0°1
即:
a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-(a^3+b^3+c^3)
=2abc{4cos[(A+B)/2]*sin(A/2)*sin(B/2)+1}
>2abc
所以:a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)>a^3+b^3+c^3+2abc