因为AB = O, 所以B的列向量都是Ax = 0的解.
于是r(B) ≤ n - r(A),
从而r(A)+r(B)≤n.
注:
1. 设B = (B1, B2, ... Bs),
由AB = O得 A(B1, B2, ... Bs) = O,
即(AB1, AB2, ... ABs) = O,
可见B的列向量都是Ax = 0的解.
2. 设r(A) = r, 则AX = 0的基础解系中含有 n - r 个线性无关的解向量,
比如说X_1, X_2, ... X_(n-r)为AX = 0的基础解系.
则B1, B2, ... Bs能由X_1, X_2, ... X_(n-r)线性表示,
因而r(B1, B2, ... Bs) ≤ n-r,
即r(B) ≤ n - r(A).