sin^2A=sin(π/3+B)sin(π/3-B)+sin^2B
=-1/2[cos(2π/3)-cos2B]+sin^2B=1/4+1/2=3/4
sinA=(根号3)/2,A=60度
若向量 AB.AC=12,那么cb=24
又a^2=28=b^2+c^2-2bccosA=b^2+c^2-24
所以b^2+c^2=52,结合bc=24,
sin^2A=sin(π/3+B)sin(π/3-B)+sin^2B
=-1/2[cos(2π/3)-cos2B]+sin^2B=1/4+1/2=3/4
sinA=(根号3)/2,A=60度
若向量 AB.AC=12,那么cb=24
又a^2=28=b^2+c^2-2bccosA=b^2+c^2-24
所以b^2+c^2=52,结合bc=24,