已知函数f(x)=aln(e x +1)-(a+1)x,g(x)=x 2 -(a-1)x-f(lnx),a∈R,且g(x

1个回答

  • (1)g(x)=x 2-(a-1)x-aln(1+x)+(a+1)lnx(x>0),

    g ′ (x)=2x-(a-1)-

    a

    1+x +

    a+1

    x (x>0) ,

    由于g(x)在x=1处取得极值,有g′(1)=0,所以a=8.

    (2)g(x)=x 2-7x-8ln(1+x)+9lnx(x>0)

    g ′ (x)=2x-7-

    8

    1+x +

    9

    x =

    (x-1)(x-3)(2x+3)

    x(x+1) (x>0) ,

    由g′(x)=0,得x=1或x=3

    函数g(x)增区间(0,1),减区间(1,3),

    所以函数g(x)在x=1处取得极大值且g(x) max=g(1)=-6-8ln2

    不等式m-8ln2≥g(x),对0≤x≤3成立,等价于m-8ln2≥g(x) max成立

    ∴m≥-6

    (3)设A(x 1,f(x 1)),B(x 2,f(x 2)).C(x 3,f(x 3)),且x 1<x 2<x 3, x 2 =

    x 1 + x 3

    2 ,

    f ′ (x)=

    8 e x

    1+ e x -9=

    -9- e x

    1+ e x <0 恒成立,∴f(x)在(-∞,+∞)上单调递减.

    ∴f(x 1)>f(x 2)>f(x 3),

    BA =( x 1 - x 2 ,f( x 1 )-f( x 2 )) ,

    BC =( x 3 - x 2 ,f( x 3 )-f( x 2 )) ,

    BA •

    BC =( x 3 - x 2 )( x 1 - x 2 )+f( x 1 )-f( x 2 )•f( x 3 )-f( x 2 )<0 .

    所以B为钝角,△ABC是钝角三角形.

    若△ABC是等腰三角形,则只能是 |

    BA |=|

    BC | .

    即 ( x 1 - x 2 ) 2 +[f( x 1 )-f( x 2 ) ] 2 =( x 3 - x 2 ) 2 +[f( x 3 )-f( x 2 ) ] 2

    ∵ x 2 =

    x 1 + x 3

    2 ∴ [f( x 1 )-f( x 2 ) ] 2 =[f( x 3 )-f( x 2 ) ] 2 .

    f(x 1)-f(x 2)≠f(x 3)-f(x 2)f(x 1)-f(x 2)=f(x 2)-f(x 3

    ∴ f(

    x 1 + x 3

    2 )=

    f( x 1 )+f( x 3 )

    2 ,

    由f(x)=8ln(1+e x)-9x, f( x 1 )+f( x 2 )-2f(

    x 1 + x 2

    2 )

    = 8[ln(1+ e x 1 )(1+ e x 1 )-ln(1+ e

    x 1 + x 2

    2 ) 2 ]

    = 8[ln(1+ e x 1 + e x 2 + e x 1 + x 2 )-ln(1+2 e

    x 1 + x 2

    2 + e x 1 + x 2 )]

    ∵x 1≠x 2∴ e x 1 + e x 2 >2

    e x 1 • e x 2 =2 e

    x 1 + x 2

    2

    ∴ 1+ e x 1 + e x 2 + e x 1 + x 2 >1+2 e

    x 1 + x 2

    2 + e x 1 + x 2

    ∴ f( x 1 )+f( x 2 )-2f(

    x 1 + x 2

    2 )>0

    ∴ f(

    x 1 + x 2

    2 )<

    f( x 1 )+f( x 2 )

    2 ,

    故△ABC是钝角三角形,但不可能是等腰三角形.