解由(1+2sinxcosx+cos^2x-sin^2x)+1
=(cos^2x+sin^2x+2sinxcosx+cos^2x-sin^2x)+1
=(cos^2x+2sinxcosx+sin^2x+cos^2x-sin^2x)+1
=[(cosx+sinx)²+cos^2x-sin^2x]+1
=[(cosx+sinx)²+(cosx-sinx)(cosx+sinx)]+1
=[(cosx+sinx)(cosx+sinx+cosx-sinx)]+1
解由(1+2sinxcosx+cos^2x-sin^2x)+1
=(cos^2x+sin^2x+2sinxcosx+cos^2x-sin^2x)+1
=(cos^2x+2sinxcosx+sin^2x+cos^2x-sin^2x)+1
=[(cosx+sinx)²+cos^2x-sin^2x]+1
=[(cosx+sinx)²+(cosx-sinx)(cosx+sinx)]+1
=[(cosx+sinx)(cosx+sinx+cosx-sinx)]+1