问道数学题(高二不等式)设三角形三边a,b,c满足a^2+b^2=c^2当n大于等于三时,求证:a^n+b^n小于c的n
2个回答
因为是三角形 又满足a^2+b^2=c^2
所以为直角三角形
所以角c为90
用正弦定理
a/sina=b/sinb=c/sinc=r
将此式带入要求正的不等式中变为证明
sina^n+sinb^n
相关问题
一道不等式大小比较题已知a.b.c满足a.b.c∈R+,a²+b²=c²,当n∈N,n>2
排序不等式问题 设a、b、c都是正实数 求证a^n*(a^2-b*c) +b^n(b^2-ac)+c^n(c^2-ab)
设a、b、c为互不相等的三个正数,a、b、c成等差数列,当n>1时,证明a^n+c^n>2*b^n.
奥数题——分式设a、b、c满足1/a+1/b+1/c=1/(a+b+c),求证:当n为奇数时,1/(a^n+b^n+c^
三角函数,(1),c^n=a^n+b^n,(n>2),a,b,c分别是三角形三边,问三角形ABC的形状(2),三角形AB
a、b、c∈正实数, a^2+b^2=c^2. 当n∈N,n>2时,请比较c^n与a^n+b^n的大小.
已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△AB
已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△AB
已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△AB
在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n的平方-1,b=2n,c=n的平方+1(n大于1)求证:∠C