椭圆定值在椭圆X2/a2 +Y2/b2=1(a>b>0)上取一点P,P与长轴两端点A,B的连线分别交短轴所在直线于M,N

1个回答

  • x^2/a^2+y^2/b^2=1,(a>b>0)

    设P点坐标为(m,n)

    长轴两端点坐标为A(a,0)B(-a,0)则

    m^2/a^2+n^2/b^2=1 即(a^2n^2)/(a^2-m^2)=b^2

    PA的直线方程为

    y-0=[(n-0)/(m-a)](x-a)

    令x=0,则y=-an/(m-a),即

    M点坐标为(-an/(m-a),0)

    PB的直线方程为

    y-0=[(n-0)/(m+a)](x+a)

    令x=0,则x=an/(m+a),即

    N点坐标为(an/(m+a),0)

    |OM|*|ON|=|-an/(m-a)|*|an/(m+a)|=|(a^2n^2)/(a^2-m^2)|=b^2

    所以|OM|*|ON|为定值b^2

    x^2/a^2+y^2/b^2=1,(a>b>0)

    设P点坐标为(m,n)

    短轴两端点坐标为B1(0,b)B2(0,-b)则

    m^2/a^2+n^2/b^2=1 即(b^2m^2)/(a^2-n^2)=a^2

    PB1的直线方程为

    y-b=[(n-b)/(m-0)](x-0)

    令y=0,则x=-bm/(n-b),即

    M点坐标为(-bm/(n-b),0)

    PB2的直线方程为

    y+b=[(n+b)/(m-0)](x-0)

    令y=0,则x=bm/(n+b),即

    N点坐标为(bm/(n+b),0)

    |OM|*|ON|=|-bm/(n-b)|*|bm/(n+b)|=|(b^2m^2)/(a^2-n^2)|=a^2

    所以|OM|*|ON|为定值a^2