解题思路:原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.
原式=sin(-1440°+45°)•cos(1080°+30°)+cos(-1080°+60°)•sin(720°+30°)
=sin45°cos30°+cos60°sin30°
=
2
2×
3
2+[1/2]×[1/2]
=
6+1
4.
点评:
本题考点: 运用诱导公式化简求值.
考点点评: 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
解题思路:原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.
原式=sin(-1440°+45°)•cos(1080°+30°)+cos(-1080°+60°)•sin(720°+30°)
=sin45°cos30°+cos60°sin30°
=
2
2×
3
2+[1/2]×[1/2]
=
6+1
4.
点评:
本题考点: 运用诱导公式化简求值.
考点点评: 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.