能组成三角形,任意两边之和要大于第三边
因为a+b>c,所以(根号a)^2+(根号b)^2>(根号c)^2
(根号a)^2+(根号b)^2=[(根号a)+(根号b)]^2-2[根号(ab)]
a、b为大于0的数,所以2[根号(ab)]>0
要使(根号a)^2+(根号b)^2>(根号c)^2成立,
那么[(根号a)+(根号b)]^2>(根号c)^2,即(根号a)+(根号b)>根号c
再由a+c>b和b+c>a也可以做出相应推导,
所以能组成三角形
能组成三角形,任意两边之和要大于第三边
因为a+b>c,所以(根号a)^2+(根号b)^2>(根号c)^2
(根号a)^2+(根号b)^2=[(根号a)+(根号b)]^2-2[根号(ab)]
a、b为大于0的数,所以2[根号(ab)]>0
要使(根号a)^2+(根号b)^2>(根号c)^2成立,
那么[(根号a)+(根号b)]^2>(根号c)^2,即(根号a)+(根号b)>根号c
再由a+c>b和b+c>a也可以做出相应推导,
所以能组成三角形