1/(6n-5)(6n+1) =1/6[1/(6n-5)-1/(6n+1)]
关于裂项相消的问题3/((6n-5)(6n+1))=1/2(1/6n-5)-(6n+1)) 1/2怎么提出来的?
2个回答
相关问题
-
a(n+1)=6n+1 bn=3/(6n-5)(6n+1) =1/2*6/(6n-5)(6n+1) =1/2*[(6n+
-
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
裂项相消法 隔项相消原式=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+.+(1/n-1/(n+2))
-
关于数学数列裂项相消问题求1/f(1)+1/f(2)+1/f(3)+.+f(n)的和 其中f(n)=2n^2-2n
-
数学公式1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
求证:[1/n+1]+[1/n+2]+…+[1/3n]>[5/6](n≥2,n∈N*).
-
已知1*1+2*2+3*3+……+n*n=1/6n(n+1)(2n+1),求1*2+3*4+5*6+7*8+.+49*5
-
裂项相消的求和方法1.1/ n(n+1)(n+2)的求和 我知道可以转化成[1/n(n+1)-1/(n+1)(n+2)]
-
求和1*4+2*5+3*6+...+n(n+3),已知1^2+2^2+3^2+...+n^2=(1/6)n(n+1)(2
-
an=1/(n根号(n+1)+(n+1)根号n)前n项和 急 裂项相消