点P(2,1)为圆(x-1)2+y2=25内弦AB的中点,则直线AB的方程为(  )

1个回答

  • 解题思路:由圆的方程找出圆心C的坐标,连接CP,由P为弦AB的中点,根据垂径定理的逆定理得到CP垂直于AB,根据两直线垂直时斜率的乘积为-1,由P与C的坐标求出直线PC的斜率,进而确定出弦AB所在直线的斜率,由P的坐标及求出的斜率,写出直线AB的方程即可.

    由圆(x-1)2+y2=25,得到圆心C坐标为(1,0),

    又P(2,1),∴kPC=1,

    ∴弦AB所在的直线方程斜率为-1,又P为AB的中点,

    则直线AB的方程为y-1=-(x-2),即x+y-3=0.

    故选:C.

    点评:

    本题考点: 直线与圆的位置关系.

    考点点评: 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,两直线垂直时斜率满足的关系,以及直线的点斜式方程,根据题意得出直线PC与直线AB垂直是解本题的关键.