f(x) 分子分母同乘以 [4+2(6+x)^(1/3)+(6+x)^(2/3)][2+√(2+x)],
则 lim[2-(6+x)^(1/3)]/[2-√(2+x)]
= lim(2-x)[2+√(2+x)]/{(2-x)[4+2(6+x)^(1/3)+(6+x)^(2/3)]}
= lim[2+√(2+x)]/[4+2(6+x)^(1/3)+(6+x)^(2/3)]
= 4/(4+4+4) = 1/3.
则应定义 f(2) = 1/3 .
f(x) 分子分母同乘以 [4+2(6+x)^(1/3)+(6+x)^(2/3)][2+√(2+x)],
则 lim[2-(6+x)^(1/3)]/[2-√(2+x)]
= lim(2-x)[2+√(2+x)]/{(2-x)[4+2(6+x)^(1/3)+(6+x)^(2/3)]}
= lim[2+√(2+x)]/[4+2(6+x)^(1/3)+(6+x)^(2/3)]
= 4/(4+4+4) = 1/3.
则应定义 f(2) = 1/3 .