设M(x,y)是原曲线上任一点,
根据公式,M 绕原点旋转 45° 后的坐标为 M‘(√2/2*(x-y) ,√2/2*(x+y)),
由于 M’ 在曲线 x^2-y^2=3 上,
因此 [√2/2*(x-y)]^2-[√2/2*(x+y)]^2=3 ,
化简得 xy= -3/2 .这就是原曲线C的方程.
设M(x,y)是原曲线上任一点,
根据公式,M 绕原点旋转 45° 后的坐标为 M‘(√2/2*(x-y) ,√2/2*(x+y)),
由于 M’ 在曲线 x^2-y^2=3 上,
因此 [√2/2*(x-y)]^2-[√2/2*(x+y)]^2=3 ,
化简得 xy= -3/2 .这就是原曲线C的方程.