原式=(1-cosA)/2 +(1-cosB)/2 +(1-cos^2C)
=2-cos(A+B)cos(A-B)-cos^2C
=2+cosCsoc(A-B)-cos^2C0
因为a+b>c,所以a+b-c>0
又因为:a+b+m>a+b>a+b-c>0
a/(a+m) +b/(b+m)>a/(a+b+m)+ b/(a+b+m)=(a+b)/(a+b+m)>[(a+b)-(a+b-c)]/[(a+b+m)-(a+b-c)]=c/(c+m)
原式=(1-cosA)/2 +(1-cosB)/2 +(1-cos^2C)
=2-cos(A+B)cos(A-B)-cos^2C
=2+cosCsoc(A-B)-cos^2C0
因为a+b>c,所以a+b-c>0
又因为:a+b+m>a+b>a+b-c>0
a/(a+m) +b/(b+m)>a/(a+b+m)+ b/(a+b+m)=(a+b)/(a+b+m)>[(a+b)-(a+b-c)]/[(a+b+m)-(a+b-c)]=c/(c+m)