An=[A(n-1)]/[3A(n-1)+1]
==> 1/An =3 +1/A(n-1)
==> {1/an}为等差数列,首项 =1/A1 =1,公差 =3
1/An =1/A1 +3(n-1) =3n-2
==> An =1/(3n-2)
Bn =An*A(n+1) =1/(3n-2)(3n+1) =[1/(3n-2) -1/(3n+1)]/3
==> Sn =[1 -1/(3n+1)]/3 = n/(3n+1)
An=[A(n-1)]/[3A(n-1)+1]
==> 1/An =3 +1/A(n-1)
==> {1/an}为等差数列,首项 =1/A1 =1,公差 =3
1/An =1/A1 +3(n-1) =3n-2
==> An =1/(3n-2)
Bn =An*A(n+1) =1/(3n-2)(3n+1) =[1/(3n-2) -1/(3n+1)]/3
==> Sn =[1 -1/(3n+1)]/3 = n/(3n+1)