cosA=cos2B=2cos^2B-1=1/3
sinA=2√2/3,sinB=√3/3
sinC=sin(A+B)
=sinAcosB+sinBcosA
=5√3/9
三角形ADC中
∠CDA=∠B+1/2∠A=∠A
正弦定理:AD/sinC=b/sin∠CDA
b=2*(2√2/3)/(5√3/9)
=4√6/5
cosA=cos2B=2cos^2B-1=1/3
sinA=2√2/3,sinB=√3/3
sinC=sin(A+B)
=sinAcosB+sinBcosA
=5√3/9
三角形ADC中
∠CDA=∠B+1/2∠A=∠A
正弦定理:AD/sinC=b/sin∠CDA
b=2*(2√2/3)/(5√3/9)
=4√6/5