因为f(x)在[a,b]上连续,所以在[a,b]上存在最大值M,最小值N;即对于一切x∈[a,b],有N
高数介值定理.若f(x)在[a,b]上连续,a求证明。
1个回答
相关问题
-
用介值性定理证明:若f(x)与g(x)在[a,b]上连续,且f(a)g(b),则必存在点 x0属属于(a,b),满足f(
-
利用中值定理证明等式设f(x)在[a b]上连续,在(a b)内可导a
-
达布定理如何证明?下面的导函数介值性定理即是达布定理.定理:设f'(x)在[a,b]上存在,r是f'(a)与f'(b)之
-
若f(x),g(x)在[a,b] 上连续,证明max( f(x) ,g(x ))在[a,b]上连续
-
一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈
-
关于连续函数的高数证明题!设f(x)在[a,b]上连续,且a
-
证明高数题设f (a )=0.f'(x )在[a,b ]连续,且|f '(x )|≤M .证明,|∫(a 到b )f(x
-
高数证明:f(x)在[0,2a]上连续,f(a)=f(2a),f(a)不等于f(0),证明存在b使f(b)=f(a+b)
-
中值定理应用设f(x),g(x)在[a,b]上连续,(a,b)上可导,g(x)不为0,证明:则存在ξ∈(a,b),使[f
-
中值定理与等式证明设函数f(x)在[a,b]上连续,在(a,b)内可导,证明:至少存在一点x,使 [bf(b)-af(a