设向量OB'=3OB,OC'=5OC,则
OA+OB'+OC'=0,
∴O是△AB'C'的重心,
∴S△AOB'=S△B'OC'=S△C'OA,设为1,
S△AOB/S△AOB'=OB/OB'=1/3,
S△BOC/S△B'OC'=OB/OB'*OC/OC'=1/15,
S△COA/S△C'OA=OC/OC'=1/5,
∴S△ABC=1/3+1/15+1/5=9/15=3/5,
∴S△AOB/S△ABC=(1/3)/(3/5)=5/9.
设向量OB'=3OB,OC'=5OC,则
OA+OB'+OC'=0,
∴O是△AB'C'的重心,
∴S△AOB'=S△B'OC'=S△C'OA,设为1,
S△AOB/S△AOB'=OB/OB'=1/3,
S△BOC/S△B'OC'=OB/OB'*OC/OC'=1/15,
S△COA/S△C'OA=OC/OC'=1/5,
∴S△ABC=1/3+1/15+1/5=9/15=3/5,
∴S△AOB/S△ABC=(1/3)/(3/5)=5/9.